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A Method of Numerical Solution of Cauchy-Type Singular integral 
Equations with Generalized Kernels and Arbitrary Complex Singularities 

A numerical method is proposed for the approximate solution of a Cauchy-type singular 

integral equation (or an uncoupled system of such equations) of the tirst or the second 
kind and with a generalized kernel, in the acme that, besides the Cauchy singular part, 
the kernel has also a Fredholm part presenting strong singularities when both its variahlcs 
tend to the same end-point of the integration interval. In this cnsc any type of real or 
gcncrally complex singuiarities in the unknown function of the integt-al equation may bc 
prcscnt near the end-points of the integration interval. ‘1 he method proposctl consists 

simply in approximating the integrals in the integral equation by using an appropriate 
numerical integration rule with generally complex abscisbns and Hcighl5. fullowcd by the 

application of the resulting approximate equation at properly sclcctcd complex collocation 
points lying uutside the integration interval. Although no proof of the convcrgcncc of the 
method seems possible, this method was seen to cxhihit good ccmvcrgcncc to the rc\ul:b 
cupccted in an cxaniplc treated. 

1. I~~TR~DUCTION 

The numerical solution of Cauchy-type singular integral equations, which will be 
called in the sequel simply singular integral equations, has become a subject of inten- 
sive research in recent years because of the frequent appearance of such equations in 
problems of mathematical physics. Among these problems WC can mention the 
following: plane static elasticity problems (problems of finite media or infinite media 
with a hole [I]. inclusion problems 121, crack problems 131, etc.), antiplane elasticity 
problems [4], elastic wave propagation problems [5, 61, elastic-perfectly plastic crack 
problems 17, 81, problems of flow of ideal and not ideal fluids [9, lo], antenna and 
other electromagnetic scattering problems [I I] (the equations of these problems are 
not exactly one-dimensional singular integral equations but very similar to them), 
waveguide and surface wave scattering and diffraction problems [I?-141, random 
rough surface scattering problems [15], etc. An account of most of the existing 

* Professor of Theoretical and Applied Mechanics at the National Technical University of Athens 
and Member of the Greek Academy of Scicnccs. 

+ Assistant at the Laboratory for Testing Materials of National Technical IJniversity of Athens. 

309 



310 THEOCARIS AND IOAKIMIDIS 

numerical techniques for the solution of a singular integral equation along a contour 
can be found in a monograph by Ivanov [16]. Besides, a powerful method for the 
numerical solution of such an equation along the interval (- 1, I), based on the reduc- 
tion of this equation to a Fredholm integral equation, was recently developed by Dow 
and Elliott [17, 181. In the same references an account of the existing methods for the 
solution of singular integral equations along a part of the real axis can also be found. 

On the other hand, more direct methods for the numerical solution of singular 
integral equations, based on the reduction of such an equation to a system of linear 
equations, after approximating the integrals through numerical integration rules and 
applying the integral equations at a number of appropriately selected points of the 
integration interval (collocation points), have been recently proposed. A review 
on these methods was written by the present authors [19]. A more detailed analysis 
of some of these methods is contained in Refs. [3, 201. 

Furthermore, the present authors recently extended the above-mentioned method 
of numerical solution of singular integral equations to the following equation [21]: 

AN(X) g(x) + B IT1 %J dt + j-l dt) 46 4 g(t) dt = f(x), -1 <x < 1, -1 

(1) 

where the constants A and B are not real but complex numbers and the functions 
k(t, x) and f(x) are known and regular along the interval [- 1, 11. In this case the 
weight function w(t), which was intentionally separated from the unknown function, 
will be of the form [21] 

w(t) = (I - t)“(l + ty, Recu,Rep > -1, (2) 

where cy. and j3 result to be also complex numbers although their sum is an integer [21]. 
In this case Gaussian Jacobi-type numerical integration rules with generally complex 
abscissas and weights have been used for the approximation of the integrals in Eq. (1). 
Furthermore, the collocation points used for the derivation of the system of linear 
equations were determined as the roots of a complex polynomial [21]. 

The aim of this paper is to generalize the results of Refs. [19, 201 for the treatment 
of the general case of singular integral equations of the first or the second kind with 
nonconstant complex coefficients, generalized complex kernels, and complex weight 
functions as described in more detail in the next section. 

2. THE INTEGRAL EQUATION 

Consider the following singular integral equation: 

,4(x) w(x) g(x) t B(x) lb e dt + Jab w(t) K(t, x) g(t) dt = f(x), a < x < b, 
u 

(3) 
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valid along a finite or infinite part (a, b) of the real axis. In Eq. (3) A(x) and B(x) 
are assumed to be known generally complex functions, continuous along the interval 
[a, b] and without singularities at the points a and b, andf(x) is also a known generally 
complex function along (a, b) but it is permitted to present power, logarithmic, or 
other complicated-type singularities near a and b. Furthermore, the kernel K(t, x) 
is assumed regular along (a, b), like a Fredholm kernel, but it is permitted to present 
strong singularities of order (- 1) when x = a or b and t - a or b, respectively. 
This behavior of the kernel K(t, x) is the basis for calling Eq. (3) O. singular integral 
equation with a generalized kernel. 

With regard to the meaning of each one of the terms of Eq. (3) it is very difficult 
to give an interpretation of general validity. In principle, the right-hand-side function 
f(x) is an a priori known function along the integration interval, like the loading 
function in plane elasticity problems. On the left-hand side of Eq. (3) the separation 
of the integral term into two terms was made just for a better presentation of the 
numerical technique; we may consider only one integral term with a kernel presenting 
a Cauchy-type singularity. Yet, a very rough interpretation of the two integral terms 
in Eq. (3) is that the first of them assumes the part of the boundary of the medium 
near x = t as straight, whereas the second of them is due to the fact that, in reality, 
the boundary of the medium is, in general, curvilinear. This term also takes into 
account other boundaries of the same medium (or interfaces), along which other 
singular integral equations hold. With regard to the free term of the left-hand side 
of Eq. (3) its appearance, whenever this term exists, may be interpreted by the fact 
that in physical problems we have limiting values of analytic functions as we approach 
a boundary and not values of these functions on the boundary itself. Next, these 
limiting values are expressed in terms of appropriately defined boundary values of 
these functions, which are denoted by Cauchy-type integrals, as well as the densities 
of these integrals, which constitute the free terms in Eq. (3). For example, in the theory 
of analytic functions, the well-known Plemelj formulas [22-241 are valid. Of course, 
all these comments are not strictly valid but may serve only for an illustration of the 
form of Eq. (3). 

Finally, the unknown function w(t)g(t) has been separated into a weight function 
w(t), containing all singularities of the unknown function near a and b (like 
power or logarithmic singularities), and a regular part g(t), which remains bounded 
along the closed interval [a, b]. With regard to the weight function w(t), it will be 
assumed to be known in advance, that is, the singularities in the solution of Eq. (3) 
should be known before the numerical solution of this equation. But this does not 
cause any difficulty. In fact, there are two completely different methods for deter- 
mining the singularities in the solution of Eq. (3), which should be exhibited by the 
weight function w(t). 

The first of these methods is based on physical considerations: near a singular 
point in a physical problem, like the end-points of the integration interval or the points 
of discontinuity of the right-hand-side function f(x) in Eq. (3), the functions consti- 
tuting the solution of a physical problem (eigher real or complex, but defined in a 
plane region surrounding the integration interval) should behave in some concrete 
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way. This way can be determined if the fundamental equations of the problem under 
consideration are known together with the geometry and boundary conditions. 
Next, it is easy to determine the singularities in the weight function w(t) in Eq. (3), 
which generally are the same as the previously mentioned singularities in the two- 
dimensional functions of the problem under consideration. This method for deter- 
mining the singularities in w(t) has the advantage that it does not require one to take 
into account Eq. (3) itself. Thus our attention is focused just near the singular points, 
where singularities are present, and the determination of the singularities, one by one, 
near each singular point, is easy to be made. This method is generally used in plane 
elasticity problems. An account of the corresponding techniques for determining 
singularities near singular points in plane elasticity can be found in Refs. [25, 261. 
Moreover, to the authors’ surprise, singularities completely analogous to those present 
in plane elasticity problems are also present in the problems of static equilibrium 
of liquid crystals of nematic type [27]. 

The second method for determining the singularities in the solution of Eq. (3) 
and, thus, the weight function w(t) too, consists in taking into account this equation 
without paying any attention to the physical problem from which it was derived. 
This is completely possible if the values of A(x) and B(x) and the behaviors of K(t, X) 
and ,f(.~) for t, .Y tending to a singular point (an end-point of the integration interval 
or a point of discontinuity of the functions entering Eq. (3)) are completely known 
and the theoretical results of Muskhelishvili and others [22-241 for the behavior 
of a Cauchy-type integral near a singular point are taken into consideration. Thus, 
if, for example, ,f(x) in Eq. (3) remains finite near a singular point x = c, then w(t) 
may become unbounded as (t - c)^ near this point and X can be determined by taking 
into account Eq. (3) and the behavior of the integrals containing w(t). A transcen- 
dental equation for the determination of X results. The value, or rather values, of h 
may result in a real or complex number. In general, there exists some value of h 
with a real part less than 0 and greater than -1. Analogous arguments hold also for 
the case of logarithmic singularities. A more detailed analysis of this technique can 
be found in Refs. [28-291. In spite of the general character of this method, it is not 
preferable to the first method for determining these singularities, mentioned in the 
previous paragraph, but can be used as a check of its results. The disadvantage of 
this second method is that it requires more algebraic manipulations for the derivation 
of the transcendental equation for the determination of the eigenvalues X than the 
first method. Moreover, it can be mentioned that, in general, the weight function w(t) 
will be complex along the integration interval (a, b) and will present complex power 
or logarithmic or other complicated singularities near a and b. Of course, it is not 
necessary that all the singular behaviors assumed for the functions entering Eq. (3) 
hold at the same time. 

One final remark on the power singularities h, incorporated in the weight function 
w(t), should be made: In general, near a singular point there exists a series of eigen- 
values A, resulting from the solution of the above-mentioned transcendental equation. 
In practice, we take into account only the dominant singularity, corresponding to the 
eigenvalue X with the least real part (in general between -1 and 0). This is almost 
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always the case with real singularities and, sometimes, with complex singularities 
too (as happens in the plane elasticity problems of a crack along a straight or curvi- 
linear interface or a rigid stamp acting on the straight boundary of an elastic half- 
plane in the case of nonnegligible friction). Unfortunately, in other applications it is 
possible to have a pair of two complex conjugate singularities instead of one dominant 
singularity. In this case both these singularities should be taken into account and the 
weight function w(t) behaves as [(t - c)” + C(t - c)‘] near a singular point t = c. 
Fortunately, at least in plane elasticity problems, it is possible to determine the value 
of the constant C and thus to completely determine the behavior of w(t) near t = c 
[26, 301. 

Before proceeding to our analysis, we would like to mention that: 

(i) Equation (3) is not reducible to a Fredholm integral equation. In fact, 
it results when we have to solve a singular integral equation along a nonsmooth 
curve [24]. Better, in most cases a system of uncoupled singular integral equations 
of form (3) results, but the method of numerical solution remains unaltered in the case 
of systems of uncoupled singular integral equations of form (3). Furthermore, the 
theoretical investigations on the solutions of singular integral equations or systems 
of such equations contained in the well-known monographs of Muskhelishvili [22], 
Gakhov [23], and Vekua [31] do not apply to Eq. (3) because of the generalized 
character of its kernel K(t, x) in the sense mentioned previously. Moreover, the concept 
of the index of a singular integral equation is of very little help for equations of 
form (3). Also the dominant equation of Eq. (3) cannot reveal the behavior of the 
unknown function at the end-points of the integration interval. 

(ii) All these difficulties have made the numerical solution of Eq. (3) almost 
impossible. To the authors’ knowledge, no such singular integral equation has ever 
been solved. On the contrary, in the case of a real weight function w(t), efficient 
methods for the numerical solution of singular integral equations, even with 
generalized kernels, have been proposed [3, 19, 201. For Eq. (3) only some theoretical 
considerations contained in the book of Pogorzelski [24] may be proved applicable, 
but these have not led to a powerful numerical technique for the solution of this 
equation. 

(iii) Singular integral equations of form (3) are very often encountered in prac- 
tical applications. The authors, being familiar with plane elasticity problems, may 
note that complex singularities and generalized kernels are almost always present 
in elastic bodies of a complicated shape, wedge apices, cracks terminating on inter- 
faces, etc. Unfortunately, although the singular integral equations for any such 
problem are known or may be easily obtained [3], nevertheless, their numerical 
solution was never tried. Thus, besides some special crack problems associated with 
complex singularities, which can be reduced to a singular integral equation of form (1), 
no other plane elasticity problems associated with complex singularities have been 
solved, or. in other words, no powerful method for the evaluation of generalized 
stress intensity factors associated with complex singularities, through the numerical 
solution of singular integral equations, is available. 
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(iv) Finally, a considerable difference between Eqs. (1) and (3), with respect to 
their numerical solution, is that the collocation points used for the numerical solution 
of Eq. (1) are the roots of appropriate polynomials, that is, the roots of analytic 
functions in the whole complex plane. The same does not, in general, hold for the 
numerical solution of Eq. (3). One more difference between Eqs. (1) and (3) is that 
Eq. (1) is reducible to an equivalent Fredholm integral equation, whereas Eq. (3) not. 

3. APPLICATION OF THE LOBATTO-JACOBI NUMERICAL INTEGRATION RULE 

In this section we will illustrate the proposed method for the numerical solution 
of Eq. (3) in the special case when we can apply the Lobatto-Jacobi numerical 
integration rule [21, 32, 331 for the approximation of the integrals. This means that 
we assume the integration interval [a, b] to be finite. Then it can be readily reduced 
to the interval [- 1, 11, assumed to be the integration interval in the Lobatto-Jacobi 
numerical inegration rule, which has the form [32] 

where the abscissas ti and the weights Ai are determined as mentioned in Ref. [32], 
and the weight function w(t) is of form (2). The characteristic feature of the Lobatto- 
Jacobi numerical integration rule is that it contains, among the abscissas used, the 
points t = 51 (for this reason it is called a closed-type numerical integration rule). 
This property makes it very useful for the determination of stress intensity factors 
in plane elasticity [19, 331, or other analogous quantities (expressing the strength of 
singularities) in fluid mechanics or other branches of mathematical physics. 

Although the Lobatto-Jacobi numerical integration rule was derived for the case 
of real singularities 01 and /I [32] in the weight function w(t), it remains also unaltered 
in the case of complex singularities, as proved in Ref. [21]. This means that 
the expressions giving the abscissas, the weights, and the error term En are the same 
in the cases of real and complex singularities. Moreover, the property of this rule to 
be exact (E, = 0) for polynomials g(t) of degree up to (2n - 3) remains valid even 
in the case of complex singularities [21]. What is not easy to prove, is the convergence 
of this rule for increasing values of n to the correct value of the integral. Although 
the authors have not been able to prove that En + 0 for n -+ co, they may note that 
this seems to be true. In fact, it was seen that, for increasing values of n, the abscissas 
ti used remain finite and lie, approximately, on a curve which, for n + so, seems 
to tend to coincide with the interval [- 1, 11. This can be seen in the case when 
01 = -0.5 + il.0 and /3 = -0.5 in Tables I and II (first columns), where the abscissas 
ti for n = 6 and II = 12 are given. Unfortunately, the authors are unaware of any 
theorems or other results confirming the foregoing remark on the location (in the 
complex plane) of the abscissas ti used. If this remark is proved correct (at least 
under some limitations on the values of 01 and fi), then the results of Kahaner 1341, 
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TABLE I 

Abscissas li and collocation points xk for the Lobatt+Jacobi numerical integration rule with 
a = -0.5 + i1.0, /3 = -0.5, and n = 6 

l.ooooO - io.ooooO 
0.96171 - iO.07457 

0.80559 - iO.13201 
0.57303 - i0.16135 

0.28814 - i0.16361 
-0.02167 - i0.14377 

-0.32725 - iO.10953 
-0.60018 - iO.06992 

-0.81526 - iO.03387 
-0.95274 - iO.00890 

-l.OOOOO - iO.OOOOO 

TABLE II 

Abscissas fi and collocation points xk for the Lobatto-Jacobi numerical integration rule with 
(Y = -0.5 + i1.0, /J = -0.5, and n = 12 

1.OOQOO - iO.OOOOO 
0.99382 - iO.01646 

0.96214 - iO.03320 
0.91067 - iO.04769 

0.84077 - iO.05957 
0.75391 - iO.06868 

0.65188 - iO.07499 
0.53677 - iO.07854 

0.41090 - iO.07947 
0.27684 - iO.07799 

0.13728 - iO.07438 
-0.00495 - iO.06869 

-0.14698 - iO.06211 
-0.28597 - i0.0.5423 

-0.41910 - iO.04572 
-0.54370 - iO.03702 

-0.65727 - iO.02851 
-0.75752 - iO.02060 

-0.84244 - iO.01361 
-0.91032 - iO.00784 

-0.95981 - iO.00355 
-0.98990 - iO.00090 

-1.OOOOo - io.OoOOO 
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who proved the convergence of the equal-weight Chebyshev quadrature rule for large 
values of II (the abscissas used being in this case complex), may be used, in an 
analogous manner, in order that the convergence of the Lobatto-Jacobi quadrature 
rule be proved too. 

In the case of Cauchy-type principal-value integrals, the Lobatto-Jacobi numerical 
integration rule (4) is modified as [33] 

s 1 
- R(s) $# + En ) X # t< (i 1 1, 2, ...) PI), 

-1 II ' 

(5) 
where [19, 331 

o,(x) = (1 - x’) g P:y’(x), q&c) = /-l w(t) s dt, (6) 

and P:,“‘(X) denotes the classical Jacobi polynomial associated with the weight 
function w(t) and of degree n. 

Considering further the property of Jacobi polynomials [35, p. 1701 

2 -g P:*“‘(x) = (n + a + p + 1) P:;ll.B+l)(X), 

we can assume, slightly modifying the definitions of a,(x) and q&c), that 

a,(x) = (1 - x”) P(nnkz1’B+l)(x), 

In the second of Eqs. (8) the symbol n?*“(z) denotes the function [36] 

This function is a Jacobi function and is closely related to the Jacobi function of the 
second kind Q$“‘(z) [35, p. 1701. Also this function n7,“V8’(z) was introduced by 
Elliott [36], who has also investigated its properties and developed asymptotic relations 
for its approximate evaluation. Of course, in the second of Eqs. (8) the function 
17J$as+1)(x) d eno es t a Cauchy-type principal-value integral, which may also be 
evaluated as the mean value of the limiting values of U&!$O+l)(z) as z + x & Oi, 
in accordance with the second Plemelj formula 1221. From the definition (9) ofnt*“‘(z), 
it follows that this function presents a jump equal to [-2rriw(x) PkSB’(x)] at a point 
x of the interval [- 1, l] when z crosses the real axis at the point x. This is a con- 
sequence of the first Plemelj formula [22]. Finally, 17, (aS6)(~) is analytic in the whole 
complex plane, the real interval [- 1, l] deleted. 

Now we will apply the Lobatto-Jacobi numerical integration rule to approximate 
the integrals in Eq. (3) (with w(t) given by Eq. (2) a: = -1 and /I = 1). Following 
the arguments of Ref. [21], we assume that the definitions of the known functions 
44 %a w, 1, x and f(x) can be extended to a sufficiently large domain G of the 
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complex plane passing through the points (‘I) and surrounding the integration 
interval [- 1, 11. The usual form of this domain G may be seen in a paper by 
Donaldson and Elliott [37]. For analytic functions this extension of the domain of 
their definition is evident. For continuous functions along (-1, l), but not analytic 
in the complex plane, it might be necessary that these functions be approximated, 
e.g., through Bernstein polynomials, before the extension of the domain of their 
definition [2 I]. For convenience, even in the latter case, we will continue using the same 
symbols for these functions. Then, by applying the Lobatto-Jacobi numerical 
integration rule to the integrals of Eq. (3) and ignoring the error terms, which seems 
to be justified for sufficiently large values of n (excactly as in the case of real singu- 
larities [19]). we obtain 

-1 <X < 1, x i ti (i = 1, 2 )...) n). (10) 

In deriving Eq. (10) we have also implicitly assumed that the unknown function g(t) 
is also anaJytic in a sufficiently large domain containing all abscissas fi and surrounding 
the integration interval [--I, 11. 

Next, by taking into account the assumption made previously on the possibility 
of extension of the definition of the functions entering Eq. (10) and based on a theorem 
on the functions of a complex variable mentioned in Ref. [21], we can assume that 
Eq. (10) is approximately valid in the domain G defined previously. At this point we 
have to remark that the domain G used here passes through the points (i 1) and con- 
tains only the part (- 1, 1) of the real axis, which divides G into two subdomains. 
On the contrary, the domain Gin Ref. [21] completely surrounded the interval [- 1, l] 
and contained a part of the real axis wider than [--I, I]. 

We have also at this stage to give a proper definition of the function qn(x) in the 
domain G, which will be denoted in the sequel by &(z). The definition of q&c) given 
by the second of Eqs. (8) cannot be used outside (-1, 1) since qn(z) is not analytic 
along (- 1, 1). This is due to the fact that Use’,“+” is defined in the Cauchy 
principal-value sense along (- 1, I) as already stated. This must be taken into account, 
otherwise the results will be completely erroneous. This difficulty is overpassed by 
replacing qn(z) by the new function &(z), defined in such a way that qn(z) m= qn(z) 
for 3 E (- 1, 1) and also that qn(z) be analytic along (- 1, l), contrary to qn(z). Of 
course, then gn(z) will be not analytic along the remaining part of the real axis, but 
this is not of much importance since the abscissas and collocation points do not lie 
along this interval. Such an extension of the definition of a Cauchy-type principal- 
value integral outside the integration interval is used, to the authors’ knowledge, for 
the first time in this paper and, perhaps, may be proved useful in other applications 
of Cauchy-type integrals too. 

To be more specific, by taking into account that [33] 

nyyz) = 2(2 - l)*(z -1 l)@ p;,lqz>, 2 $ L-1, 11, (11) 
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as well as the property of Jacobi functions of the second kind Q(a*B)(~) [35, p. 1711: 

we find that 

@y’@) = _ 7T noL) T(n + B + 1) 
-(z - l)“(z + v P~*8’(z> + 2a+8 r(n + o1 + B + 1) sm 770~ 

l-z ,2+1,+a+I-a;+, (13) 

where the branches of (z - l)” and (z + l)B are defined in such a way that these 
functions are analytic along the real axis with its [-I, I] excluded. 

Furthermore, the function 17’,“Y8’(z), d fi d e ne in the principal-value sense, can be 
evaluated along the interval (- 1, l), because of Eq. (13), as 

Ip”‘(x) = -7f cot 7raw(x) P$qx) + 2a+B T(a) m + B + 1) 
m+a+p+ 1) 

x F ( 
1-X 

II + 1, -n - a - 6; 1 - a;+ (14) 

This equation was obtained for the first time, but only for real vahres of 2 and /3 
by Tricomi [38]. For complex values of ry and fi, but under the restriction that (a + /3) 
is an integer, Eq. (14) was derived by Karpenko [39]. Nevertheless, the derivation of 
Eq. (14) based on Eq. (13) and, furthermore, on the properties of hypergeometric 
functions is free from restrictions on the values of 01 and j?, besides the evident restric- 
tion that 01 is not a nonpositive integer. 

Now we define the function 
l-(a) qn + P + 1) 

xF n+l,--lz-~/?;l-r;& i 
l-z 

This function is defined in such a way that it coincides with np 6)(~) for z lying on 
(- 1, 1). It is also analytic in the whole plane, the real intervals (- co, - l] and [l, co) 
excluded. This function is the continuation of 171g*“‘(x) outside (-1, l), not IT’,“3B’(z). 
Thus, in Eq. (lo), when we consider it valid outside the interval (- 1, 1) and inside 
the domain G mentioned previously, we have to consider the function q,,(z) defined 
by the second of Eqs. (8), but with 17k<11B+1)(z) replaced by flk$TO+l)(z), defined with 
the help of Eq. (15). Then qn(z) will be denoted by (in(z). Otherwise, the results will 
not be correct. 
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Next, following the developments of Refs. [19,20], we apply Eq. (10) at a certain 
number (in fact (n - 1)) of collocation points xk , defined as the roots of the trans- 
cendental equation 

4) 44 %(4 - w4 Pm = 0, w(z) = (1 - z>“( 1 + z)fl. (16) 

The arguments of Refs. [19,20] assure the existence of these collocation points, 
which interchange with the abscissas used for real values of 01 and j3 (01, p > -1). 
For complex values of 01 and /3 (Re OL, Re /3 > -I), although no proof of this assertion 
seems possible, yet the situation is not much different. In Tables I and II the abscissas 
and collocation points used for a: = -0.5 + i1.0, /3 = -0.5, n = 6 and 12, respec- 
tively, and A(z) = 0, are seen to be alternating along a line in the complex plane 
connecting the end-points (+l) and (-1) of the interval [-I, I]. This line for real 
a and fl coincides with the interval [-1, 11. As was also previously mentioned, this 
line seems to tend to coincide with the interval [- 1, 11, even in the case of complex 
singularities, but when a sufficiently large number of abscissas n is used. 

Finally, by using the complex collocation points xL , as already defined, we can 
reduce Eq. (lo), and moreover Eq. (3) for a = - 1, b = 1 and w(t) defined by Eq. (2) 
to the following system of linear equations: 

i Ai l+f$$ + K(Q) xk)l g(ti) -f(xk), k = 1, 2 ,..., /I - 1. (17) 
i=l E 

This system of linear equations should be supplemented by one more linear equation, 
easily resulting, as in the case of real singularities 01 and p, by using a condition 
resulting from physical considerations. We will not enter into any more details 
and comments, restricting ourselves to refer to the appropriate references [3, 19-24, 
28, 29. 31-33, 39-401. 

4. THE GENERAL CASE 

The arguments of the previous section can be readily generalized to the general 
case of Eq. (3) under the assumptions made in Section 2. The basic steps in solving 
such an equation are: 

(i) To properly select the numerical integration rule to be used. Perhaps, this 
will be a well-known numerical integration rule, like the Lobatto-Jacobi rule, con- 
sidered in Section 3, or the Gauss-Jacobi rule, already applied to the numerical 
solution of Cauchy-type singular integral equations by the present authors [21, 401. 
In general, even when no appropriate numerical integration rule for the approximation 
of the integrals in Eq. (3) is available, one can derive such a rule for an arbitrary 
weight function w(t) and apply it to the numerical evaluation of both regular [37] 
and Cauchy-type principal-value integrals [41]. Also the functions qn(z) and Qn(z) 
corresponding to this rule can be easily derived. 
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(ii) To evaluate the generally complex collocation points xlz to be used, through 
the solution of a transcendental equation of form (16). It must be noted at this point 
that the extension of the definition of qa(x) outside the interval (a, b), qn(z), as made 
in Section 3, and in such a way that it is analytic in the domain G (surrounded by a 
contour passing through a and b) is not a difficult matter and can be easily achieved 
both for complex power and for logarithmic singularities. To do this, we have to 
properly select the branch of the weight function w(z) in the complex plane so that 
it does not present any jump across the interval (a, b) but only in the part of the real 
axis outside this interval. Of course, these arguments hold only under the initially 
made assumption that the singularities of the weight function are restricted in the 
neighborhoods of the end-points a and b of the integration interval [d, b]. 

(iii) After the evaluation of the collocation points, the resulting system of linear 
equations of form (17) has to be solved, probably supplemented by one more linear 
equation, as mentioned in Section 3. The values of the unknown function g(t) at 
the abscissas used ti will be determined from the solution of the system of linear 
equations. 

(iv) Finally, an interpolation procedure may be used for the approximation of 
g(t) through a polynomial series so that its determination along the whole interval 
[a, b] or, perhaps, even outside it, is possible. 

For a more detailed analysis of these steps in the case of a real weight function w(t), 
one may see Refs. [19,20]. Some comments on the convergence of the technique to 
the correct results, although no proof of it, can be found in Ref. [21] 

5. AN APPLICATION 

As an application we consider the following well-known singular integral equation, 
already considered by several authors (see e.g., [42-441): 

1 
s 

1 1 
- 40 I ~ 

t-x 
f -& 

I 
g(t)& = 1, 0 < x < 1, 

rr 0 

under the additional condition 

s 1 
w(t)g(t) dt = 0. 

0 

The weight function w(t) is of the form 

w(t) = (1 - t)- t”, 

where 01 is determined by 

cos?ra = --A, -l<Reoc<O. 

(18) 

(19) 

(20) 

(21) 
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Equation (18), when h is real, results in the antiplane elasticity problem of a crack 
terminating perpendicularly at a bimaterial interface. Furthermore, this equation has 
a closed-form solution [42244]. Since the authors are not aware of any other singular 
integral equation of the type considered in this paper having a closed-form solution, 
they have used Eq. (18) to check their theoretical considerations of the previous 
sections, assuming that the constant X is a complex number. Then N results from 
Eq. (21) as complex too. At this stage it can be remarked that, although the solution 
given by Bueckner [42] was obtained under the assumption that X is a real number, the 
method of solution used by Barnett [43], although considered for real values of X too, 
seems to be also applicable, even when X is a complex number. 

Equation (18) was solved by using the Lobatto-Jacobi method, as proposed in 
Section 3, for various values of cy, the corresponding values of h determined from 
Eq. (21), after a transformation of the integration interval [0, l] so that it coincides 
with [- 1, 11. The values of the “stress intensity factors” K(0) and K(l), proportional 
to the values of g(0) and g(1) of the unknown function g(t) at t = 0 and t = 1, 
respectively [44] (the ratio pL2/p1 in Ref. [44] considered here equal to 1 for the eva- 
luation of K(O)), were evaluated for n = 3(3)15 and their convergence to their 
theoretical values given by [44] 

K(0) = -2-a-1/e(l + a)/sin(&ra), K(1) = ol/sin(&ol), (2-a 

obtained from the closed-form solution of Eq. (18), are shown in Table III for 
a = -0.5 + il.0 and 01 = -0.7 + il.0 (/I = -0.5). The results obtained are good 
enough although the imaginary part of o(. is sufficiently large. Usually, in plane elas- 
ticity problems the imaginary part of a complex singularity is much less than its real 
part. Furthermore, for a value of 01 in Eq. (18) such that 0 < -Re a: < 0.5, the 
developments of Ref. [44] for real singularities should be taken into account in the 

TABLE III 

Convergence of the numerically obtained values of the “generalized stress intensity factors” in the 
solution of Eq. (18) to their theoretical values for an increasing number n of the abscissas used 

a = -0.5 + i1.0, ,B = -0.5 o! = -0.7 + i1.0, /3 = -0.5 

n K(O) K(1) K(O) KU) 

3 -0.10836 + i0.39784 0.45413 - i0.17651 0.08030 + i0.34246 0.44840 - jO.24749 

6 0.26660 + i0.49186 0.43382 - i0.16593 0.26561 + i0.44494 0.42885 - jO.24714 

9 0.14414 + i0.44638 0.43385 - i0.16574 0.24280 + i0.41247 0.42852 - iO.24706 

12 0.16846 + iO.40401 0.43382 - i0.16573 0.25256 + iO.40956 0.42851 - iO.24701 

15 0.19139 + iO.40744 0.43382 - i0.16574 0.25476 + i0.41295 0.42853 - jO.24700 

Theoretical 0.18706 + iO.42506 0.43382 - i0.16574 0.25296 + i0.41495 0.42854 - iO.24703 
value 
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case of complex singularities too. Finally, a considerable part of the errors in the results 
of Table III is simply due to ignoring the pole of the Fredholm kernel in Eq. (18) 
in the interval (- l,O). This pole can of course be taken into account as proposed in 
Ref. [45]. 

Finally, some remarks of computational character may be added: 

(i) In evaluating the abscissas ti and the collocation points xI, , the Newton- 
Raphson method, particularly convenient for the classical orthogonal polynomials 
and their associated functions even in the case of complex roots, has been used. The 
simple trigonometric and real abscissas and collocation points of the Lobatto- 
Chebyschev method [46] (with the same n) have been used as first approximations. 
Of course, this technique is not applicable for sufficiently large values of Im (II 
or Im p. 

(ii) The property of the Jacobi functions 17$“‘(z) that [36] 

q!y’(-z) = (-l)““~$qz) (23) 

has been taken into account, together with Eq. (14), for the development of a formula 
analogous to (15) for the computation of ff$s)(z) for Re z < 0. Equation (15) was 
used for the evaluation of nrlB’(z) for Re z > 0. Thus, a rapid convergence of the 
hypergeometric function series [47, p. 5561 was achieved. 

(iii) The evaluation of the values of the gamma function for complex arguments, 
required in Eq. (15), was based on tables included in Ref. [47, pp. 277-2871. 
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